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Abstract. E6 grand unification combines the standard model matter and Higgs states in the single 27 rep-
resentation. I discuss how the E6 structure underlies the quasi-realistic free fermion heterotic-string models.
E6→ SO(10)×U(1) breaking is obtained by a GSO phase in the N = 1 partition function. The equivalence
of this symmetry breaking phase with a particular choice of boundary condition basis vectors, which is used
in the quasi-realistic models, is demonstrated in several cases. As a result, matter states in the spinorial
16 representation of SO(10) arise from the twisted sectors, whereas the Higgs states arise from the un-
twisted sector. Possible additional phenomenological implications of this E6 symmetry breaking pattern are
discussed.

1 Introduction

Grand unification is well supported by the pattern of ob-
served fermion and gauge boson charges. Additionally, the
observed logarithmic running of the standard model pa-
rameters is compatible with the hypothesis of unification in
the gauge sector and the heavy generation matter sector.
Furthermore, the longevity of the proton and the suppres-
sion of left-handed neutrino masses also indicate a large
unification scale of the order of 1016 GeV.
Among the possible unification scenarios, SU(5) is the

most economical. The observation of neutrino oscillations
and consequently of neutrino masses necessitates adding
SU(5) singlets and hence the need to go outside SU(5).
Matter unification in the framework ofSO(10) is most com-
pelling as it accommodates all the matter states of a single
generation in the 16 spinorial representation. Then, a pri-
ori, one needs only two types of representations to accom-
modate the standard model matter and Higgs spectrum,
the spinorial 16 and the vectorial 10 representations. The
framework ofE6 grand unification has even further appeal,
as, at the expense of adding an additional singlet, it embeds
the 16matter and 10 Higgs SO(10) states into the 27 repre-
sentation ofE6; for reviews and references see e.g. [1–3].
As the observed symmetry at low energies consists

solely of the standard model symmetry, its embedding into
a grand unification group necessitates that we break the
larger GUT symmetry. Grand unification introduces addi-
tional difficulties with proton decay and neutrino masses.
The grand unification gauge symmetry breaking and the
miscellanea issues typically require the introduction of
large representations of the GUT gauge group, like the 126
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of SO(10) or the 351 of E6, and devising complicated sym-
metry breaking potentials to ensure proton longevity.
By producing a consistent framework for perturbative

quantum gravity, while simultaneously giving rise to gauge
and matter structures, string theory goes a step beyond
conventional grand unified theories (GUTs). In the mod-
ern view of string theory, the different ten dimensional
string theories, as well as eleven dimensional supergravity,
are effective limits of a more fundamental theory, which at
present is still unknown. The heterotic limit [4], in particu-
lar, gives rise to the grand unification structures. Further-
more, the heterotic string is the only effective limit that
gives rise to spinorial representations in the perturbative
spectrum, and hence is the only limit that can accommo-
date the SO(10) and E6 unification pictures [5]. A class
of string models that accommodate the conventional GUT
structures are the so-called free fermionic models [6–19],
which are related to Z2×Z2 orbifold compactification at
special points in the moduli space [20–28].
String theory offers several additional advantages over

conventional GUTs. The replication of fermion families
is associated with the properties of the six dimensional
compactified manifold. Depending on the properties of
this internal manifold, string theory gives rise to a novel
gauge symmetry breaking mechanism, which can be seen
as breaking by GSO projections, or as breaking by Wilson
lines. Furthermore, string theory gives rise to a doublet–
triplet splitting mechanism, in which the color triplets are
projected out from the physical spectrum by GSO projec-
tions, whereas the electroweak doublets remain. The GUT
doublet–triplet splitting problem then has a simple solu-
tion without the need to introduce large representations.
An explicit realization of the doublet–triplet splitting in
string GUT models was introduced in [47, 48].
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The doublet–triplet splitting is induced by the break-
ing of the SO(10) GUT to SO(6)×SO(4). The SO(10)
structure that underlies the three generation free fermionic
models is well understood and has been amply exposed in
the past. However, the models in fact possess an underly-
ing E6 structure that, for reasons explained here, has been
somewhat obscured in the past. It is the purpose of this
paper to remedy this situation and to expose the E6 struc-
ture that underlies the realistic free fermionic models. As
discussed above, the characteristic feature of E6 is the uni-
fication of the matter and Higgs states into the 27 represen-
tation of E6. As is typical of string theory, however, the E6
symmetry is broken directly at the string level by a GSO
phase. As in the case of SO(10)→ SO(6)×SO(4), the
string induced breaking E6→ SO(10)×U(1) has the ad-
ditional consequence of projecting the twisted moduli [29],
andmay prove important for understanding the problem of
supersymmetry breaking.

2 Realistic free fermionic models

To elucidate the underlying E6 structure of the realistic
free fermionic models I discuss first the general struc-
ture of the three generation models. In the free fermionic
formulation [30–32] of the heterotic string in four dimen-
sions all the world-sheet degrees of freedom required to
cancel the conformal anomaly are represented in terms
of free fermions propagating on the string world-sheet.
In the light-cone gauge the world-sheet field content con-
sists of two transverse left- and right-moving space-time
coordinate bosons, Xµ1,2 and X̄

µ
1,2, and their left-moving

fermionic superpartners ψµ1,2, and additional 62 purely
internal Majorana–Weyl fermions, of which 18 are left-
moving, χI , and 44 are right-moving, φa. In the su-
persymmetric sector the world-sheet supersymmetry is
realized non-linearly and the world-sheet supercurrent
is given by TF = ψ

µ∂Xµ+ iχ
IyIωI (I = 1, . . . , 6). The

{χI , yI , ωI} (I = 1, . . . , 6) are 18 real free fermions trans-
forming as the adjoint representation of SU(2)6. Under
parallel transport around a non-contractible loop on the
toroidal world-sheet the fermionic fields pick up a phase

f →−eiπα(f)f , α(f) ∈ (−1,+1] . (1)

A model in this construction [30–32] is defined by a set
of boundary conditions basis vectors and by a choice of
generalized GSO projection coefficients, which satisfy the
one-loop modular invariance constraints. The boundary
condition basis vectors bk span a finite additive group Ξ =∑
knibi, where ni = 0, . . . , Nzi−1. The physical massless

states in the Hilbert space of a given sector α ∈ Ξ are
then obtained by acting on the vacuum state of that sector
with the world-sheet bosonic and fermionic mode opera-
tors, with frequencies νf , νf∗ and by subsequently applying
the generalized GSO projections,

{

eiπ(biFα)− δαc
∗

(
α
bi

)}

|s〉= 0 , (2)

where Fα(f) is a fermion number operator counting each
mode of f once (and if f is complex, f∗ minus once). For
periodic complex fermions (i.e. for α(f) = 1) the vacuum
is a spinor in order to represent the Clifford algebra of
the corresponding zero modes. For each periodic complex
fermion f , there are two degenerate vacua |+〉, |−〉, an-
nihilated by the zero modes f0 and f

∗
0 and with fermion

number F (f) = 0,−1 respectively. In (2), δα =−1 if ψµ is
periodic in the sector α, and δα =+1 if ψ

µ is antiperiodic
in the sector α.

2.1 An exemplary model

The model in Tables 1 and 2 provide an example of a three
generation free fermionic model [14]. The model, the full
massless spectrum, and the trilevel superpotential are
given in [14]. Various phenomenological aspects of this
model were analyzed in the literature [33–41].
The boundary condition basis vectors which generate

the realistic free fermionic models are, in general, divided
into two major subsets. The first set consist of the NAHE
set [42–46], which is a set of five boundary condition ba-
sis vectors denoted {1, S, b1, b2, b3}. With ‘0’ indicating
Neveu–Schwarz (NS) boundary conditions and ‘1’ indi-
cating Ramond boundary conditions, these vectors are as
shown in Table 1, with the following choice of phases which
define how the generalized GSO projections are to be per-
formed in each sector of the theory:

c

(
bi
bj

)

= c

(
bi
S

)

=−c

(
1
1

)

=−1 . (3)

The NAHE set Table 1 is a common subset to all the
models discussed here, and therefore will be dropped in the
following. The gauge group at the level of the NAHE set is

SO(10)×SO(6)3×E8 .

The SO(10) group gives rise to the universal part of the ob-
servable gauge group. The SO(6) groups are flavor depen-
dent symmetries, while the E8 group is hidden, as the stan-
dardmodel states are neutral under this group. The NAHE

Table 1. The NAHE set

ψµ χ12 χ34 χ56 ψ̄1,... ,5 η̄1 η̄2 η̄3 φ̄1,... ,8

1 1 1 1 1 1, . . . , 1 1 1 1 1, . . . , 1
S 1 1 1 1 0, . . . , 0 0 0 0 0, . . . , 0

b1 1 1 0 0 1, . . . , 1 1 0 0 0, . . . , 0
b2 1 0 1 0 1, . . . , 1 0 1 0 0, . . . , 0
b3 1 0 0 1 1, . . . , 1 0 0 1 0, . . . , 0

y3,... ,6 ȳ3,... ,6 y1,2, ω5,6 ȳ1,2, ω̄5,6 ω1,... ,4 ω̄1,... ,4

1 1, . . . , 1 1, . . . , 1 1, . . . , 1 1, . . . , 1 1, . . . , 1 1, . . . , 1
S 0, . . . , 0 0, . . . , 0 0, . . . , 0 0, . . . , 0 0, . . . , 0 0, . . . , 0

b1 1, . . . , 1 1, . . . , 1 0, . . . , 0 0, . . . , 0 0, . . . , 0 0, . . . , 0
b2 0, . . . , 0 0, . . . , 0 1, . . . , 1 1, . . . , 1 0, . . . , 0 0, . . . , 0
b3 0, . . . , 0 0, . . . , 0 0, . . . , 0 0, . . . , 0 1, . . . , 1 1, . . . , 1
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Table 2. Standard-like model

ψµ χ12 χ34 χ56 ψ̄1,... ,5 η̄1 η̄2 η̄3 φ̄1,... ,8

α 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0
β 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0
γ 0 0 0 0 1

2
1
2
1
2
1
2
1
2

1
2

1
2

1
2

1
2 0 1 1

1
2
1
2
1
2 0

y3y6 y4ȳ4 y5ȳ5 ȳ3ȳ6 y1ω5 y2ȳ2 ω6ω̄6 ȳ1ω̄5 ω2ω4 ω1ω̄1 ω3ω̄3 ω̄2ω̄4

α 1 0 0 0 0 0 1 1 0 0 1 1
β 0 0 1 1 1 0 0 0 0 1 0 1
γ 0 1 0 1 0 1 0 1 1 0 0 0

set basis vectors b1, b2 and b3 correspond to the three twisted
sectors of theZ2×Z2 orbifold. At the level of the NAHE set
the free fermionic models contain 48 chiral generations and
correspond to a so-called “orbifold string GUT”.
To reduce the number of generations and break the

GUT symmetry one introduces three additional basis vec-
tors, typically denoted α, β and γ. The additional basis
vectors that generate the string model of [14] are displayed
in Table 2. We have

c

(
bi
α, β, γ

)

=−c

(
α, β
1

)

= c

(
α
β

)

= c

(
γ
α

)

=−c

(
γ
β

)

=−1 (i= 1, 2, 3) , (4)

with the others specified by modular invariance and space-
time supersymmetry. The boundary condition basis vec-
tors in Table 2 break the gauge group to

SU(3)×SU(2)×U(1)2×U(1)6

×SU(5)×SU(3)×U(1)2 ,

where the first two U(1) arise from the SO(10) group, the
next sixU(1) are obtained from SO(6)3, and the remaining
two U(1) arise from the hidden E8 gauge group. Addition-
ally, the basis vectors α, β, γ reduce the number of gen-
erations to three. One from each of the twisted sectors b1,
b2 and b3. Electroweak Higgs doublets are obtained from
the untwisted sector, and the sector b1+ b2+α+β. The
full spectrum of this model and detailed phenomenological
studies are given in the literature [14, 33–41].
From the above we see that the model exhibits an un-

derlying SO(10) symmetry, but there is no trace of an
E6 group. It is the purpose of this paper to elucidate the
stringy E6→ SO(10)×U(1) breaking, and to show that,
just as in the case of the stringy SO(10)→ SO(6)×SO(4)
the stringy breaking of E6 has additional phenomenologi-
cal consequences.

3 E6 origins

To expose the underlyingE6 structure of the free fermionic
models, we have to look at subsets of the basis vectors or
of the partition function that preserve the E6 symmetry.
A good starting point is the subset of basis vectors

{1, S, 2γ, ξ2 = 1+ b1+ b2+ b3} . (5)

This subset generates an N = 4 SUSY vacuum with
SO(12)×SO(16)×SO(16) gauge group. The NS sector
gives rise to the space-time vector bosons that gener-
ate SO(12)×SO(16)×SO(8)×SO(8), and the sector ξ2
complements the hidden gauge group to SO(16) [20–25].
Adding the basis vectors b1 and b2 then breaks N = 4
to N = 1 supersymmetry. It breaks the gauge group to
SO(4)3×SO(10)×U(1)3×SO(16) and introduces 24 ob-
servable matter multiplets in the spinorial 16 representa-
tion of the observable SO(10), from the sectors b1, b2 and
b3 = 1+ b1+ b2+ ξ2, and 16 hidden matter multiplets in
the vectorial 16 representation of the hidden SO(16) gauge
group from the sectors bj+(2γ⊕ ξ2), j = 1, 2, 3. The sym-
bol ⊕ is used here to indicate that there are two sectors
that produce the hidden matter representations, one be-
ing bj+2γ and the other bj+2γ+ ξ2. This notation will be
used in the following.
Note that we could have projected the enhancing vec-

tor bosons from the sector ξ2 by the choice of GSO phase

c

(
ξ2
S

)

=−1, where S is the SUSY generator. The price is

that the SUSY generators are projected out and the vac-
uum is tachyon free and non-supersymmetric. The reason
that there are no tachyons is that the only tachyons in
the model arise from the NS sector, and the projections of

those only depend on δS , and not on the phase c

(
ξ2
S

)

. This

is reminiscent of the ten dimensional heterotic SO(16)×
SO(16) model, in which modular invariance forces the
GSO phase that breaks E8×E8 → SO(16)×SO(16) to
also project out the space-time supersymmetry.
So far there is no reminiscence of E6. An alternative

way to produce the model of (5) is by starting with the set
of basis vectors

{1, S, ξ1, ξ2 = 1+ b1+ b2+ b3} , (6)

with

ξ1 = (0, · · · , 0| 1, · · · , 1︸ ︷︷ ︸
ψ̄1,···,5,η̄1,2,3

, 0, · · · , 0) . (7)

For a suitable choice of GSO phases, this set generates an
N = 4 vacuum. The four dimensional gauge group in this
model depends on the discrete choice of the GSO phase

c

(
ξ1
ξ2

)

=±1 .



806 A.E. Faraggi: Higgs–matter splitting in quasi-realistic orbifold string GUTs

Since the overlap of periodic fermions between ξ1 and ξ2

is empty, we note from (2) that the choice c

(
ξ1
ξ2

)

= −1

projects all the states from the sectors ξ1 and ξ2, whereas

the choice c

(
ξ1
ξ2

)

= +1 retains them in the spectrum.

Thus, the choice

c

(
ξ1
ξ2

)

=+1 (8)

produces a model with SO(12)×E8×E8 gauge group,
whereas the choice

c

(
ξ1
ξ2

)

=−1 (9)

produces a model with SO(12)×SO(16)×SO(16) gauge
group and reproduces the spectrum of (5). Thus, we note
that there are two distinct ways to generate the same
model. One is by the mapping ξ1→ 2γ and the alternative

method by the choice of the discrete phase c

(
ξ1
ξ2

)

.

Adding the basis vectors {b1, b2} to the set (6) cor-
responds to the Z2×Z2 orbifold projection. This breaks

N = 4 to N = 1 supersymmetry. Setting c

(
ξ1
ξ2

)

=+1 gen-

erates the SO(4)3×E6×U(1)2×E8. The sectors bj consist
of 12 Ramond fermions and produce states in the spino-
rial 16 representation of SO(10), whereas the sectors bj+
ξ1 produce a matching number of states in the vectorial
10 representation of SO(10). In addition the sectors bj+
ξ1 produce a matching number of SO(10) singlets which
are charged under the U(1) in the decomposition E6→
SO(10)×U(1) and a matching number of E6 singlets. The
untwisted NS sector produces six vectorial 10 multiplets,
a matching number of SO(10) singlets, and a matching
number of E6 singlets. The sector ξ1 produces three 16
multiplets and three 16 multiplets. Thus, in this case we
get a model with 24 multiplets in the 27 representation of
E6 from the twisted sectors and three pairs in the 27+27
representation from the untwisted sector.

Setting c

(
ξ1
ξ2

)

= −1 projects the vector bosons from

the sectors ξ1 and ξ2. Vector bosons therefore are ob-
tained solely from the untwisted sector, which produces the
SO(16)×SO(16) gauge group. Adding the Z2×Z2 twists
breaks the gauge group to SO(4)3×SO(10)×U(1)3×
SO(16). The twisted sectors bj still produce the 24 multi-
plets in the spinorial 16 representation of SO(10), but now
the sectors bj + ξ1 produce states in the vectorial 16 rep-
resentation of the hidden SO(16) gauge group. The same
spectrum is reproduced by replacing the basis vector ξ1
with the basis vector 2γ. In this case the overlap between

ξ2 and 2γ is not empty. Therefore, the projection

(
ξ2
2γ

)

cannot project all the states from ξ2 but merely halves the
spectrum from this sector, whereas the sector 2γ does not
produce massless states. The basis vectors b1 and b2 re-
duce the number of supersymmetries and break the gauge

symmetry as before. The matter multiplets from the un-
twisted sector and the twisted sectors bj remain as before,
and the sectors bj+(2γ⊕ ξ2) now produce the 24 vectorial
16 representations of the hidden SO(16) gauge group.
It is therefore noted that the map

ξ1→ 2γ (10)

is in fact equivalent to the discrete choice of GSO phase

c

(
ξ1
ξ2

)

=+1→ c

(
ξ1
ξ2

)

=−1 , (11)

and that the latter corresponds to the gauge symmetry
breaking pattern E6→ SO(10)×U(1). It is noted that the
map (10) also requires the phase map

c

(
ξ1
ξ1

)

→−c

(
2γ
2γ

)

. (12)

So far I discussed the models only at the N = 4 level and
at the N = 1 Z2×Z2 orbifold level. In the following I turn
to examine how this structure is manifested in the case
of quasi-realistic three generation models. In this regard
it should be noted that the original construction of three
generation free fermionmodels, that utilize the NAHE sub-
set of basis vectors, obscures the underlying E6 structure
of these models. The reason is that these models utilize
the vector γ to break the observable SO(2n)→ SU(n)×
U(1). The vector 2γ, which separates the gauge degrees of
freedom from the geometrical degrees of freedom, there-
fore arises only as a multiple of the vector γ. The vector
2γ also fixes the charges of the chiral generations under
U(1) in the E8 Cartan subalgebra, which are external to
E6, and hence reduces the NAHE base generations by 1/2.
Thus, the NAHE base, supplemented with the 2γ, or ξ1,
contains 24 chiral generations, as opposed to the NAHE
set by itself, which contains 48 chiral generations. The re-
maining reduction to three generations is obtained by the
action of the basis vectors {α, β, γ} on the internal free
fermions {y, ω|ȳ, ω̄}1,···,6, each inducing a Z2 projection
on each of the twisted sectors bj (j = 1, 2, 3). Hence, one
reduces the number of generations in each from eight to
one. Models that do not contain the vector γ, like SO(6)×
SO(4) models, must explicitly include the vector 2γ, or ξ1,
in the basis, to reduce the number of generations to three.
The model of Table 3 is constructed to study the map

(10) in a quasi-realistic model. It should be emphasized
that the aim is not to construct a realistic model, but
merely to study the map in a model that shares some of
the structure of the three generation free fermionic models.
In particular the assignment of boundary conditions with
respect to the internal world-sheet fermions {y, ω|ȳ, ω̄} is
reminiscent of this assignment in the three generation free
fermionic models. The model in Table 3 is generated by the
subset of basis vectors {1, S, ξ1, ξ2, b1, b2}, and the addi-
tional basis vectors {b4, b5, α} in Table 3.
We have the choice of generalized GSO coefficients

c

(
S
aj

)

= δaj , c

(
b1,2,4,5

b1,2,4,5, ξ1, ξ2, α

)

= c

(
1
ξ1, ξ2

)

=−1 ,
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Table 3. Pati–Salam model

ψµ χ12 χ34 χ56 ψ̄1,... ,5 η̄1 η̄2 η̄3 φ̄1,... ,8

α 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
β 1 0 1 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0
γ 0 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 0 0

y3ȳ3 y4ȳ4 y5ȳ5 y6ȳ6 y1ȳ1 y2ȳ2 ω5ω̄5 ω6ω̄6 ω1ω̄1 ω2ω̄2 ω3ω̄3 ω4ω̄4

α 1 0 0 1 0 0 1 0 0 0 0 1
β 0 0 0 1 0 1 1 0 1 0 0 0
γ 0 1 0 1 0 1 0 1 0 1 0 1

c

(
1
α

)

= c

(
ξ1
ξ2, α

)

= 1 ,

with the others specified by modular invariance and space-
time supersymmetry. The gauge group of the model arises
as follows. The NS sector produces the generators of the
observable and hidden gauge groups

(SO(6)×SU(2)L×SU(2)R×U(1)1,2,3)O
× (SO(12)×SU(2)H1×SU(2)H2)H , (13)

and the sectors ξ1 and ξ2 enhance the observable and hid-
den, gauge groups of the model, respectively to

observable : SU(6)×SU(2)L×U(1)
2 , (14)

hidden : E7×SU(2) , (15)

where SU(2)R and the U(1) combination

U(1)′6 = U(1)1+U(1)2−U(1)3 (16)

are embedded in SU(6), and the two orthogonalU(1) com-
binations are given by

U(1)′1 = U(1)1−U(1)2 , (17)

U(1)′2 = U(1)1+U(1)2+2U(1)3 . (18)

Similarly, the hidden SO(12)×SU(2)H1 are enhanced by
the states from the sector ξ2 to produce the E7 gauge
group.
This model is not a realistic model. It preserves some

of the structure of the quasi-realistic string models in the
sense that it produces three chiral generations from the sec-
tors b1, b2 and b3. But the full spectrum is not realistic
as it contains additional chiral matter, and the untwisted
electroweak Higgs bosons are projected out. The purpose
here is to study how the maps (10) and (11) are related in
a model that preserves some of this realistic structure. In
the model of Table 3, with the choice of phases above, the
sectors bj⊕ bj+ ξ1 produce three chiral generations in the
(15, 1)+(6, 2) of SU(6)×SU(2)L. The sectors b4,5⊕ b4,5+
ξ1 and b4+ b5⊕ b4+ b5+ ξ1 produce states in the (15, 1)+
(6̄, 2) and the sectors containing α, which breaks the NS
SO(10) gauge subgroup, produce states that transform as
(6, 1)+(1, 2) under SU(6)×SU(2)L and transform as dou-
blets under the hidden SU(2) gauge group. These sectors
are b2+ b4+α, b1+ b4+ b5+α, b1+ b2+ b4+α, b2+ b3+

b5+α, b3+ b5+α, where I heuristically defined the com-
bination b3 = 1+ b1+ b2+ ξ2. The full massless spectrum
of this model is given in Appendix A. Table 6 contains
the states in this model that originate from sectors that
preserve the SO(10) symmetry of the NS sector, whereas
Table 7 contains the SO(10) breaking spectrum.
We can now project the vector bosons from the sec-

tors ξ1 and ξ2 by the map (11) which fixes the phase (9).
The full massless spectrum of this model is given in Ap-
pendix B, where Tables 8, and 9 contain the SO(10) pre-
serving and SO(10) breaking spectrum, respectively. The
GSO projections now project out the states from the sec-
tors ξ1 and ξ2. The gauge group in this case arises solely
from the NS sector, and the four dimensional gauge group
is that of (13). In this case the sectors bj⊕ ξ1 split. The
sectors bj produce spinorial matter states of the observable
gauge group, whereas the sectors bj+ ξ1 produce vectorial
matter states of the hidden gauge group. Thus, the would-
be twisted Higgs states are projected out from the physi-
cal spectrum by this splitting. Similarly, it is noted from
Table 8 that the spinorial matter states from the sector
S+ b4+ b5 are projected out from the physical spectrum,
and this sector produces vectorial matter states in the ob-
servable sector. Therefore, the original E6 embedding of
the spinorial (or matter) and vectorial (or Higgs) represen-
tations, which is “remembered” in the SU(6) (15, 1) and
(6, 2) representations, is broken by the choice of the GSO
projection phase (9). Similarly, the SO(10) breaking spec-
trum in this model, shown in Table 9, is split between the
sectors that contain, and do not contain, ξ1, which in the
previous model were combined.
We can now perform the map (10). Since the overlap

between ξ2 and 2γ is now not empty, we can choose the

phase c

(
ξ1
2γ

)

=−1. Choosing the opposite phase amounts

to a redefinition of the charges and has no physical effect.
In the hidden sector of this model the NS sector generates
the gauge group

(SO(8)×SU(2)H3 ×SU(2)H4×SU(2)H1×SU(2)H2)H ,
(19)

and the sector ξ2 enhances the hidden sector gauge symme-
try to SO(12)×SU(2)H3×SU(2)H4 , which is identical to
that of Appendix B. Thus, in this model the vectorial hid-
den sector matter states arise from the sectors bj+2γ and
bj+2γ+ ξ2. The symbol ⊕ is used to indicate this combi-
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Table 4. Flipped SU(5) model

ψµ χ12 χ34 χ56 ψ̄1,... ,5 η̄1 η̄2 η̄3 φ̄1,... ,8

α 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
β 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0
γ′ 0 0 0 0 1

2
1
2
1
2
1
2
1
2

1
2

1
2

1
2 0 0 0 0 0 1 1 1

y3y6 y4ȳ4 y5ȳ5 ȳ3ȳ6 y1ω5 y2ȳ2 ω6ω̄6 ȳ1ω̄5 ω2ω4 ω1ω̄1 ω3ω̄3 ω̄2ω̄4

b4 1 0 0 1 0 0 1 1 0 0 1 1
b5 0 0 1 1 1 0 0 1 0 1 0 1
γ′ 0 1 0 0 0 1 0 0 1 0 0 0

nation in Table 11. Inspecting the spectrum in Appendices
B and C, we note that the spectrum is indeed identical with
the map

ξ1↔ (2γ⊕ ξ2) . (20)

Note that in Table 11 the states arise from separate sec-
tors and do not combine, as is the case in Table 9 of Ap-
pendix B.
A similar map operates in models which utilize the vec-

tor γ and hence break the SO(10) symmetry to SU(5)×
U(1) or to SU(3)×SU(2)×U(1)2. Supplementing the
NAHE set basis vectors with the set of basis vectors in
Table 4 and the choice of the additional generalized GSO
coefficients:

c

(
1

b4, b5, γ
′

)

= c

(
b4, b5, γ

′

b1, b2, b3

)

= c

(
γ′

b4, b5

)

=−c

(
b4
b5

)

=+1 ,

c

(
S
aj

)

= δaj .

The gauge group of this model is

(SU(5)×U(1)×U(1)1,2,3×U(1)4,5,6)O
× (SO(10)×SO(6))H , (21)

where U(1)1,2,3 are embedded in the observable E8,
whereas U(1)4,5,6 are from the complexified world-sheet
real fermions, (ȳ3+iȳ6), (ȳ1+iω̄5), (ω̄2+iω̄4). Space-time
vector bosons in this model arise solely from the Neveu–
Schwarz sector. The model contains several additional
combinations of basis vectors that may a priori give rise to
vector bosons. These include the sectors 2γ′, ξ2 = 1+ b1+
b2+ b3 and the sector S+ b1+ b2+ b3+ b4+ b5±γ′. All the
states from these sectors are projected out and hence there
is no enhancement of the NS gauge group in this model. In
the case of sector 2γ′ the projection depends on γ · bj . If γ′ ·
bj = even and γ

′ · bi = odd, with i �= j, vector bosons from
2γ′ are projected out. This may occur because γ′ must
contain periodic internal fermions from the set {y, ω|ȳ, ω̄}.
The reason is that γ′ breaks the SO(10) symmetry and
simultaneously halves the number of generations by fix-
ing the U(1)1,2,3 charges. In models with only periodic
boundary conditions the latter function is performed by
the vector 2γ, which does not break the gauge group. Thus,
in NAHE based models with 1/2 boundary conditions, we

must assign periodic boundary conditions in γ to internal
fermions to insure that full SO(10) spinorial 16 representa-
tions remain in the physical spectrum. This means that we
have the freedom to choose appropriate boundary condi-
tions that project the vector bosons from 2γ′. Additionally,
with the choice of phases above the vector bosons from the
sector S+ b1+ b2+ b3+ b4+ b5±γ′ are projected out.
The model of Table 4 then contains three generations

of SO(10) chiral 16 representations, decomposed under
SU(5)×U(1) from the sectors b1,2,3; three generations
of the hidden SO(16) vectorial 16 representation, decom-
posed under the hidden SO(10)×SO(6) gauge group. The
sectors b2+ b5, b1+ b4 and S+ b1+ b2+ b4+ b5 produce
states that are E8×E8 singlets, and are charged with re-
spect to the complexified internal fermions, {ȳ3ȳ6; ȳ1ω̄5;
ω̄2ω̄4}. The sectors b3±γ′, S+ b2+ b3+ b5±γ′, S+ b2+
b3+b4+b5±γ′, S+b1+b3+b4±γ′, S+b1+b3+b4+b5±
γ′, S+ b1+ b2+ b4+ b5± γ′ produce fractionally charged
matter states that transform as 4+ 4̄ of the hidden SO(6)
gauge group. Note that in this model the entire set of un-
twisted geometrical moduli are projected out due to the
specific pairing of the left-moving real fermions into com-
plex pairs [29]. Additionally, the twisted moduli from the
sectors b1,2,3 are projected out as well [29]. The NS sector in
this model produces, in addition to the gravity and gauge
multiplets, scalar states that are charged with respect to
U(1)4,5,6. I note that this is not a realistic model as it does
not contain the Higgs representations that are needed to
break the GUT and electroweak symmetries.
I now turn to show how the map (10) is implemented in

this model. The map is induced by the substitution γ′→ γ,
with γ given in Table 5.
Additionally, modular invariance requires the phase

modification

c

(
γ
γ

)

=−c

(
γ′

γ′

)

. (22)

All other GSO phases are identical in the two models. The
gauge group in this model arises as follows. In the ob-
servable sector the gauge group remains as in (21). In the
hidden sector the NS sector produces the gauge bosons of
the

SU(4)×U(1)×SO(4)×SO(4) (23)

subgroup, and the sector ξ2 = 1+ b1+ b2+ b3 produces the
vector bosons that complete the hidden gauge group to
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Table 5.Map γ′→ γ

ψµ χ12 χ34 χ56 ψ̄1,... ,5 η̄1 η̄2 η̄3 φ̄1,... ,8

γ 0 0 0 0 1
2
1
2
1
2
1
2
1
2

1
2

1
2

1
2

1
2
1
2
1
2
1
2 0 0 1 1

y3y6 y4ȳ4 y5ȳ5 ȳ3ȳ6 y1ω5 y2ȳ2 ω6ω̄6 ȳ1ω̄5 ω2ω4 ω1ω̄1 ω3ω̄3 ω̄2ω̄4

γ 0 1 0 0 0 1 0 0 1 0 0 0

SO(10)×SO(6). Thus, the four dimensional gauge group
is identical in the two models. The sectors b1,2,3, b2+ b5,
b1+ b4 and S+ b1+ b2+ b4+ b5 are not affected by this
map, and therefore trivially produce the same spectrum.
The three hidden SO(16) vectorial representations are now
obtained from the sectors b1,2,3+(2γ⊕ ξ2), and are decom-
posed under the unbroken hidden SO(10)×SO(6) gauge
group. Thus the spectrum from these sectors is identical
to the one found in the model of Table 4. Finally, the ex-
otic fractionally charged states are obtained in this model
from the sectors b3±γ⊕ ξ2, S+ b2+ b3+ b5±γ⊕ ξ2, S+
b2+ b3+ b4+ b5±γ⊕ ξ2, S+ b1+ b3+ b4±γ⊕ ξ2, S+ b1+
b3+b4+b5±γ⊕ξ2, S+b1+b2+b3+b5±γ⊕ξ2, and, as in
the previous model, transform as 4+ 4̄ of the hidden SO(6)
gauge group. Hence, we see that the entire spectrum of the
two models is identical, with the substitutions

2γ′→ (2γ⊕ ξ2) ,

γ′→ (γ⊕ ξ2) , (24)

in sectors that preserve and break the observable SO(10)
symmetry, respectively.
It ought to be remarked, however, that the map γ→

γ′ does not always exist in the case of the three gener-
ation standard-like models. The reason is that there are
such cases in which the modular invariant constraints are
not preserved by the map. Such examples are provided
by the models of [14–17]. In these models the assignment
in the basis vectors {α, β} and γ, is such that the prod-
uct α ·γ among the world-sheet fermions that produce the
observable E8 gauge group is 3/2. This means that the
product between these basis vectors in the hidden sector
has to be half-integral as well. Thus, as the map γ′→ γ
removes an even number of half-integral boundary con-
ditions, it cannot preserve the modular invariance con-
straints. Nevertheless, also in these models, the Higgs and
matter sectors still preserve their E6 origins, as they orig-
inate from sectors that preserve the SO(10) symmetry.
Similarly, the models of [50, 51] do not originate from an
N = 4 SO(12)×E8×E8 vacuum, but rather from N = 4
SO(16)×E7×E7 and SO(28)×E8, respectively. There-
fore, in these cases the overlap between ξ1 and ξ2 is not
empty, and there is no equivalence between the map and
the discreet choice of the phase. However, the models
of [50, 51] do not produce realistic spectra, as discussed
there. The model of [6] provides an example of a quasi-
realistic three generation free fermionic model, in which
the equivalence between the map and the discrete choice of
the phase is applicable.

4 Conclusions

I demonstrated in this paper that the utilization of the
vector 2γ in a large class of quasi-realistic free fermionic
models is equivalent to setting the GSO projection coeffi-
cient between the two spinorial generators of the observ-
able and hidden SO(16) group factors ξ1 and ξ2 equal to

c

(
ξ1
ξ2

)

=−1 . (25)

Although the equivalence was illustrated in several con-
crete models, I conjecture that it is in fact a general equiv-
alence and arises from modular properties of the N = 1
partition function. Thus, this equivalence applies to the
larger class of free fermionic models. It would be of further
interest to examine whether it applies to other classes of
string compactification, and to ask what the precise mod-
ular properties are that it reflects.
This results in the projection of the states from the

sectors ξ1 and ξ2 and has important phenomenological
implications. At the N = 4 level it results in the break-
ing of the E8×E8 gauge group to SO(16)×SO(16). In
the N = 1 ten dimensional level it implies the breaking
of N = 1 supersymmetry. This result arises in ten dimen-
sions because of the identity S = 1+ ξ1+ ξ2, where S is
the supersymmetry generator. A question of interest in this
respect is whether this phase plays a role in supersymme-
try breaking in lower dimensions. In [26–28] it was argued
that free phases in the partition function may in certain
cases be interpreted as vacuum expectation values of back-
ground fields in the effective field theory description of the
string vacuum. A question of interest from this point of

view is whether the GSO phase c

(
ξ1
ξ2

)

admits such an

interpretation.
In the N = 1 model the choice of the GSO phase (9) re-

sults in the breaking of E6→ SO(10)×U(1). In this case
the 27 multiplet of E6 splits into spinorial matter states
from the twisted sectors and vectorial matter states from
the untwisted sector. The would-be vectorial matter states
from the twisted sectors are mapped to vectorial hidden
matter states, whereas the untwisted spinorial states are
projected out. In this way, while the E6 symmetry is bro-
ken, the models possess an underlying E6 grand unifying
structure. The mapping of the twisted observable vector
states into hidden matter states also results in the projec-
tion of the twisted moduli in these models. An additional
consequence of this breaking is that the U(1) which is em-
bedded in E6 becomes anomalous [49], which may be an
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additional indication for the relevance of this symmetry
breaking pattern for supersymmetry breaking. To summa-

rize, understanding the role of the phase c

(
ξ1
ξ2

)

may hold

the key to understanding some of the key questions in the
relation between string theory and the particle data.
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Appendix A: Model with enhanced
symmetries

Themodel with enhanced symmetries is defined in Tables 6
and 7.

Table 6. SO(10) preserving spectrum in the model of Table 3,

with c

(
ξ1
ξ2

)
= +1. The symbol ⊕ is used to denote that the

states arise from the two sectors a and a+ξ1. Here SO(10) pre-
serving means that these states arise from sectors that do not
contain the basis vector α

SEC SU(6)×SU(2)L Q′1 Q′2 E7×SU(2)H1

Neveu– (15, 1) 2 2 (1, 1)
Schwarz (15, 1) −2 −2 (1, 1)
⊕ξ1 (15, 1) −2 2 (1, 1)

(15, 1) 2 −2 (1, 1)
(15, 1) 0 −2 (1, 1)
(15, 1) 0 2 (1, 1)
(1, 1) ∓2 ±6 (1, 1)
(1, 1) ±2 0 (1, 1)
(1, 1) ±2 ±6 (1, 1)

6× (1, 1) 0 0 (1, 1)

b1⊕ ξ1 (15, 1) 1 1 (1, 1)
(6, 2) 1 1 (1, 1)
(1, 1) −3 −3 (1, 1)

4× (1, 1) ±1 ∓3 (1, 1)

b2⊕ ξ1 (15, 1) −1 1 (1, 1)
(6, 2) −1 1 (1, 1)
(1, 1) 3 −3 (1, 1)

4× (1, 1) ±1 ±3 (1, 1)

b3⊕ ξ1 (15, 1) 0 −1 (1, 1)
(6, 2) 0 −1 (1, 1)
(1, 1) 0 6 (1, 1)

4× (1, 1) 0 ±1 (1, 1)

b4⊕ ξ1 (15, 1) 1 1 (1, 1)
(6̄, 2) −1 −1 (1, 1)
(1, 1) −3 −3 (1, 1)

4× (1, 1) ±1 ∓3 (1, 1)

S+ b4 (15, 1) 0 −1 (1, 1)
+b5⊕ ξ1 (6̄, 2) 0 1 (1, 1)

(1, 1) 0 6 (1, 1)
4× (1, 1) ±1 0 (1, 1)

Table 6. Continued

SEC SU(6)×SU(2)L Q′1 Q′2 E7×SU(2)H1

b5⊕ ξ1 (15, 1) −1 1 (1, 1)
(6̄, 2) 1 −1 (1, 1)
(1, 1) 0 −3 (1, 1)

4× (1, 1) ±1 ∓3 (1, 1)

Table 7. SO(10) breaking spectrum in the model of Table 3,

with c

(
ξ1
ξ2

)
=+1

SEC SU(6)×SU(2)L Q′1 Q′2 E7×SU(2)H1

S+ b2+ b4 (6, 1) 0 −2 (1, 2)
+α⊕ ξ1 (1, 2) −2 0 (1, 2)

b1+ b4+ b5 (6, 1) −1 1 (1, 2)
+α⊕ ξ1 (1, 2) 1 3 (1, 2)

b1+ b2+ b4 (6, 1) −1 1 (1, 2)
+α⊕ ξ1 (1, 2) −1 −3 (1, 2)

b2+ b3+ b5 (6, 1) 0 −1 (1, 2)
+α⊕ ξ1 (1, 2) 1 0 (1, 2)

S+ b3+ b5 (6, 1) 1 1 (1, 2)
+α⊕ ξ1 (1, 2) 1 −3 (1, 2)

S+ b1+ b2
+b3+ b4 (6, 1) 1 1 (1, 2)
+α⊕ ξ1 (1, 2) −1 3 (1, 2)

b2+ b3+ b5 (6, 1) 0 −1 (1, 2)
+α⊕ ξ1 (1, 2) 1 0 (1, 2)

S+ b3+ b5 (6, 1) 1 1 (1, 2)
+α⊕ ξ1 (1, 2) 1 −3 (1, 2)

Appendix B: Model with c

(
ξ1
ξ2

)

=−1

The model with c

(
ξ1
ξ2

)

=−1 is defined in Tables 8 and 9.

Table 8. SO(10) preserving spectrum in the model of Table 3,

with c

(
ξ1
ξ2

)
=−1

SEC SU(4) Q′6 Q′1 Q′2 SO(12)
×SU(2)LSU(2)R ×SU(2)H1

×SU(2)H2

Neveu– (6, 1, 1) ±2 ±2 ±2 (1, 1, 1)
Schwarz (6, 1, 1) ±2 ∓2 ±2 (1, 1, 1)

(6, 1, 1) ∓2 0 ±4 (1, 1, 1)
(1, 1, 1) 0 ±2 ±6 (1, 1, 1)
(1, 1, 1) ±4 ∓2 ∓2 (1, 1, 1)
(1, 1, 1) ±4 0 ∓4 (1, 1, 1)
(1, 1, 1) 0 ±4 0 (1, 1, 1)
(1, 1, 1) 0 ±2 ±6 (1, 1, 1)
(1, 1, 1) ±4 ±2 ∓2 (1, 1, 1)
6× (1, 1) 0 0 (1, 1)



A.E. Faraggi: Higgs–matter splitting in quasi-realistic orbifold string GUTs 811

Table 8. Continued

SEC SU(4) Q′6 Q′1 Q′2 SO(12)×
×SU(2)L×SU(2)R SU(2)H1

×SU(2)H2

b1 (4, 2, 1) 1 1 1 (1, 1, 1)
(4̄, 1, 2) 1 1 1 (1, 1, 1)

b1+ ξ1 (1, 1, 1) 0 −1 3 (12, 1, 1)
(1, 1, 1) 0 −1 3 (1, 2, 2)

b2 (4, 2, 1) 1 −1 1 (1, 1, 1)
(4̄, 1, 2) 1 −1 1 (1, 1, 1)

b2+ ξ1 (1, 1, 1) 0 1 3 (12, 1, 1)
(1, 1, 1) 0 1 3 (1, 2, 2)

b3 (4, 2, 1) −1 0 2 (1, 1, 1)
(4̄, 1, 2) −1 0 2 (1, 1, 1)

b3+ ξ1 (1, 1, 1) 1 0 1 (12, 1, 1)
(1, 1, 1) 1 0 1 (1, 2, 2)

b4 (4̄, 2, 1) −1 −1 −1 (1, 1, 1)
(4̄, 1, 2) 1 1 1 (1, 1, 1)

b4+ ξ1 (1, 1, 1) 0 −1 3 (12, 1, 1)
(1, 1, 1) 0 1 −3 (1, 2, 2)

b5 (4̄, 2, 1) −1 1 −1 (1, 1, 1)
(4̄, 1, 2) 1 −1 1 (1, 1, 1)

b5+ ξ1 (1, 1, 1) 0 −1 −3 (12, 1, 1)
(1, 1, 1) 0 1 3 (1, 2, 2)

S+ b4+ b5 (6, 1, 1) −2 0 −2 (1, 1, 1)
(1, 2, 2) 2 0 2 (1, 1, 1)
(1, 1, 1) 4 0 −2 (1, 1, 1)
(1, 1, 1) 0 0 6 (1, 1, 1)

4× (1, 1, 1) 0 ±2 0 (1, 1, 1)

Table 9. SO(10) breaking spectrum in the model of Table 3,

with c

(
ξ1
ξ2

)
=−1

SEC SU(4) Q′6 Q′1 Q′2 SO(12)
×SU(2)L ×SU(2)H1
×SU(2)R ×SU(2)H2

b1+ b4 (4, 1, 1) 0 −1 3 (1, 2, 1)
+b5+α+ ξ1

b1+ b4 (1, 2, 1) 0 1 3 (1, 1, 2)
+b5+α (1, 1, 2) −2 −1 1 (1, 1, 2)

b1+ b2 (4, 1, 1) 1 −1 1 (1, 2, 1)
+b4+α+ ξ1

b1+ b2 (1, 2, 1) 0 −1 −3 (1, 1, 2)
+b4+α (1, 1, 2) −2 −1 1 (1, 1, 2)

S+ b2 (4, 1, 1) 1 0 −2 (1, 1, 2)
+b4+α

S+ b2 (1, 2, 1) 0 −1 0 (1, 1, 2)
+b4+α+ ξ1 (1, 1, 2) −2 0 −2 (1, 1, 2)

b2+ b3 (4, 1, 1) −1 0 2 (1, 2, 1)
+b5+α+ ξ1

b2+ b3 (1, 2, 1) 2 0 2 (1, 1, 2)
+b5+α (1, 1, 2) 0 −2 0 (1, 1, 2)

Table 9. Continued

SEC SU(4) Q′6 Q′1 Q′2 SO(12)
×SU(2)L ×SU(2)H1
×SU(2)R ×SU(2)H2

S+ b1 (4, 1, 1) −1 −1 −1 (1, 1, 2)
+b3+ b4+
b5+α+ ξ1

S+ b2+ b3 (1, 2, 1) 2 −1 −1 (1, 2, 1)
+b4+ b5+α (1, 1, 2) 0 2 −3 (1, 2, 1)

S+ b3+ b5+α (4̄, 1, 1) 1 1 1 (1, 1, 2)

S+ b3+ b5 (1, 2, 1) 2 −1 −1 (1, 2, 1)
+α+ ξ1 (1, 1, 2) 0 2 −3 (1, 2, 1)

Appendix C: Model with 2γ

The model with 2γ is defined in Tables 10 and 11.

Table 10. SO(10) preserving spectrum in the model of
Table 3, with the substitution ξ1→ 2γ

SEC SU(4) Q′6 Q′1 Q′2 SO(12)×
×SU(2)L ×SU(2)H1
×SU(2)R ×SU(2)H2

Neveu– (6, 1, 1) ±2 ±2 ±2 (1, 1, 1)
Schwarz (6, 1, 1) ±2 ∓2 ±2 (1, 1, 1)

(6, 1, 1) ∓2 0 ±4 (1, 1, 1)
(1, 1, 1) 0 ±2 ±6 (1, 1, 1)
(1, 1, 1) ±4 ∓2 ∓2 (1, 1, 1)
(1, 1, 1) ±4 0 ∓4 (1, 1, 1)
(1, 1, 1) 0 ±4 0 (1, 1, 1)
(1, 1, 1) 0 ±2 ±6 (1, 1, 1)
(1, 1, 1) ±4 ±2 ∓2 (1, 1, 1)
6× (1, 1) 0 0 (1, 1)

b1 (4, 2, 1) 1 1 1 (1, 1, 1)
(4̄, 1, 2) 1 1 1 (1, 1, 1)

b1+(2γ⊕ ξ2) (1, 1, 1) 0 −1 3 (12, 1, 1)
(1, 1, 1) 0 −1 3 (1, 2, 2)

b2 (4, 2, 1) 1 −1 1 (1, 1, 1)
(4̄, 1, 2) 1 −1 1 (1, 1, 1)

b2+(2γ⊕ ξ2) (1, 1, 1) 0 1 3 (12, 1, 1)
(1, 1, 1) 0 1 3 (1, 2, 2)

b3 (4, 2, 1) −1 0 2 (1, 1, 1)
(4̄, 1, 2) −1 0 2 (1, 1, 1)

b3+(2γ⊕ ξ2) (1, 1, 1) 1 0 1 (12, 1, 1)
(1, 1, 1) 1 0 1 (1, 2, 2)

b4 (4̄, 2, 1) −1 −1 −1 (1, 1, 1)
(4̄, 1, 2) 1 1 1 (1, 1, 1)

b4+(2γ⊕ ξ2) (1, 1, 1) 0 −1 3 (12, 1, 1)
(1, 1, 1) 0 1 3 (1, 2, 2)

b5 (4̄, 2, 1) −1 1 −1 (1, 1, 1)
(4̄, 1, 2) 1 −1 1 (1, 1, 1)
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Table 10. Continued

SEC SU(4) Q′6 Q′1 Q′2 SO(12)×
×SU(2)L ×SU(2)H1
×SU(2)R ×SU(2)H2

b5+(2γ⊕ ξ2) (1, 1, 1) 0 −1 −3 (12, 1, 1)
(1, 1, 1) 1 1 3 (1, 2, 2)

S+ b4+ b5 (6, 1, 1) −2 0 −2 (1, 1, 1)
(1, 2, 2) 2 0 2 (1, 1, 1)
(1, 1, 1) 4 0 −2 (1, 1, 1)
(1, 1, 1) 0 0 6 (1, 1, 1)

4× (1, 1, 1) 0 ±2 0 (1, 1, 1)

Table 11. SO(10) breaking spectrum in the model of Table 3,
with the substitution ξ1→ 2γ

SEC SU(4) Q′6 Q′1 Q′2 SO(12)
×SU(2)L ×SU(2)H1
×SU(2)R ×SU(2)H2

b1+ b4+ b5 (4, 1, 1) 1 −1 1 (1, 2, 1)
+α+(ξ2+2γ)

b1+ b4 (1, 2, 1) 0 1 3 (1, 1, 2)
+b5+α (1, 1, 2) −2 −1 1 (1, 1, 2)

b1+ b2+ b4 (4, 1, 1) 1 −1 1 (1, 2, 1)
+α+(ξ2+2γ)

b1+ b2 (1, 2, 1) 0 −1 −3 (1, 1, 2)
+b4+α (1, 1, 2) −2 −1 1 (1, 1, 2)

S+ b2 (4, 1, 1) 1 0 −2 (1, 1, 2)
+b4+α

S+ b2+ b4 (1, 2, 1) 0 −1 0 (1, 1, 2)
+α+(ξ2+2γ) (1, 1, 2) −2 0 −2 (1, 1, 2)

b2+ b3+ b5 (4, 1, 1) −1 0 2 (1, 2, 1)
+α+(ξ2+2γ)

b2+ b3 (1, 2, 1) 2 0 2 (1, 1, 2)
+b5+α (1, 1, 2) 0 −2 0 (1, 1, 2)

S+ b1+ b3 (4, 1, 1) −1 −1 −1 (1, 1, 2)
+b4+ b5+α
+(ξ2+2γ)

S+ b2+ b3 (1, 2, 1) 2 −1 −1 (1, 2, 1)
+b4+ b5+α (1, 1, 2) 0 2 −3 (1, 2, 1)

S+ b3 (4̄, 1, 1) 1 1 1 (1, 1, 2)
+b5+α

S+ b3+ b5 (1, 2, 1) 2 −1 −1 (1, 2, 1)
+α+(ξ2+2γ) (1, 1, 2) 0 2 −3 (1, 2, 1)
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